arviz.plot_ess#

arviz.plot_ess(idata, var_names=None, filter_vars=None, kind='local', relative=False, coords=None, figsize=None, grid=None, textsize=None, rug=False, rug_kind='diverging', n_points=20, extra_methods=False, min_ess=400, labeller=None, ax=None, extra_kwargs=None, text_kwargs=None, hline_kwargs=None, rug_kwargs=None, backend=None, backend_kwargs=None, show=None, **kwargs)[source]#

Generate quantile, local, or evolution ESS plots.

The local and the quantile ESS plots are recommended for checking that there are enough samples for all the explored regions of the parameter space. Checking local and quantile ESS is particularly relevant when working with HDI intervals as opposed to ESS bulk, which is suitable for point estimates.

Parameters:
idataInferenceData

Any object that can be converted to an arviz.InferenceData object Refer to documentation of arviz.convert_to_dataset() for details.

var_nameslist of str, optional

Variables to be plotted. Prefix the variables by ~ when you want to exclude them from the plot. See this section for usage examples.

filter_vars{None, “like”, “regex”}, default None

If None (default), interpret var_names as the real variables names. If “like”, interpret var_names as substrings of the real variables names. If “regex”, interpret var_names as regular expressions on the real variables names. See this section for usage examples.

kind{“local”, “quantile”, “evolution”}, default “local”

Specify the kind of plot:

  • The kind="local" argument generates the ESS’ local efficiency for estimating quantiles of a desired posterior.

  • The kind="quantile" argument generates the ESS’ local efficiency for estimating small-interval probability of a desired posterior.

  • The kind="evolution" argument generates the estimated ESS’ with incrised number of iterations of a desired posterior.

relativebool, default False

Show relative ess in plot ress = ess / N.

coordsdict, optional

Coordinates of var_names to be plotted. Passed to xarray.Dataset.sel(). See this section for usage examples.

gridtuple, optional

Number of rows and columns. By default, the rows and columns are automatically inferred. See this section for usage examples.

figsize(float, float), optional

Figure size. If None it will be defined automatically.

textsizefloat, optional

Text size scaling factor for labels, titles and lines. If None it will be autoscaled based on figsize.

rugbool, default False

Add a rug plot for a specific subset of values.

rug_kindstr, default “diverging”

Variable in sample stats to use as rug mask. Must be a boolean variable.

n_pointsint, default 20

Number of points for which to plot their quantile/local ess or number of subsets in the evolution plot.

extra_methodsbool, default False

Plot mean and sd ESS as horizontal lines. Not taken into account if kind = 'evolution'.

min_essint, default 400

Minimum number of ESS desired. If relative=True the line is plotted at min_ess / n_samples for local and quantile kinds and as a curve following the min_ess / n dependency in evolution kind.

labellerLabeller, optional

Class providing the method make_label_vert to generate the labels in the plot titles. Read the Label guide for more details and usage examples.

ax2D array_like of matplotlib Axes or Bokeh Figure, optional

A 2D array of locations into which to plot the densities. If not supplied, ArviZ will create its own array of plot areas (and return it).

extra_kwargsdict, optional

If evolution plot, extra_kwargs is used to plot ess tail and differentiate it from ess bulk. Otherwise, passed to extra methods lines.

text_kwargsdict, optional

Only taken into account when extra_methods=True. kwargs passed to ax.annotate for extra methods lines labels. It accepts the additional key x to set xy=(text_kwargs["x"], mcse)

hline_kwargsdict, optional

kwargs passed to axhline() or to Span depending on the backend for the horizontal minimum ESS line. For relative ess evolution plots the kwargs are passed to plot() or to line

rug_kwargsdict

kwargs passed to rug plot.

backend{“matplotlib”, “bokeh”}, default “matplotlib”

Select plotting backend.

backend_kwargsdict, optional

These are kwargs specific to the backend being used, passed to matplotlib.pyplot.subplots() or bokeh.plotting.figure. For additional documentation check the plotting method of the backend.

showbool, optional

Call backend show function.

**kwargs

Passed as-is to matplotlib.axes.Axes.hist() or matplotlib.axes.Axes.plot() function depending on the value of kind.

Returns:
axesmatplotlib Axes or Bokeh Figure

See also

ess

Calculate estimate of the effective sample size.

References

[1]

Vehtari et al. (2021). Rank-normalization, folding, and localization: An improved Rhat for assessing convergence of MCMC. Bayesian analysis, 16(2):667-718.

Examples

Plot local ESS.

>>> import arviz as az
>>> idata = az.load_arviz_data("centered_eight")
>>> coords = {"school": ["Choate", "Lawrenceville"]}
>>> az.plot_ess(
...     idata, kind="local", var_names=["mu", "theta"], coords=coords
... )
../../_images/arviz-plot_ess-1.png

Plot ESS evolution as the number of samples increase. When the model is converging properly, both lines in this plot should be roughly linear.

>>> az.plot_ess(
...     idata, kind="evolution", var_names=["mu", "theta"], coords=coords
... )
../../_images/arviz-plot_ess-2.png

Customize local ESS plot to look like reference paper.

>>> az.plot_ess(
...     idata, kind="local", var_names=["mu"], drawstyle="steps-mid", color="k",
...     linestyle="-", marker=None, rug=True, rug_kwargs={"color": "r"}
... )
../../_images/arviz-plot_ess-3.png

Customize ESS evolution plot to look like reference paper.

>>> extra_kwargs = {"color": "lightsteelblue"}
>>> az.plot_ess(
...     idata, kind="evolution", var_names=["mu"],
...     color="royalblue", extra_kwargs=extra_kwargs
... )
../../_images/arviz-plot_ess-4.png