arviz.PyMCSamplingWrapper#
- class arviz.PyMCSamplingWrapper(model, idata_orig=None, log_lik_fun=None, is_ufunc=True, posterior_vars=None, sample_kwargs=None, idata_kwargs=None, log_lik_kwargs=None, apply_ufunc_kwargs=None)[source]#
PyMC (4.0+) sampling wrapper base class.
See the documentation on
SamplingWrapper
for a more detailed description. An example ofPyMCSamplingWrapper
usage can be found in the pymc_refitting notebook.Warning
Sampling wrappers are an experimental feature in a very early stage. Please use them with caution.
Methods
PyMCSamplingWrapper.__init__
(model[, ...])Check that all methods listed are implemented.
Return sampling result without modifying.
Get the log likelilhood samples \(\log p_{post(-i)}(y_i)\).
Update data and sample model on modified_observed_data.
Select a subset of the observations in idata_orig.